崩INSTITUTEOF EDUCATION

Maths

Aidan Roantree

Higher Level
2020-21

Algebra - Powers \& Logs II

Unit HIGHER MATHS SAMPLE
 Algebra: Powers and Logs

8.2 Logarithms

1. Definition of Logarithm (Log)

* Logarithm, or log, is another term for index, when the emphasis is placed on the index.
* For example, in the index statement

$$
2^{3}=8
$$

the \log is 3 .
2. Index Statement and Log Statement

* The index statement

$$
2^{3}=8
$$

can be written as a \log statement in the form

$$
\log _{2} 8=3,
$$

i.e. the base, 2 , is written as a subscript and the value of the power, 8 , is written directly after the \log, and the value of the \log (index) is 3 .

* The meaning of the symbol

$$
\log _{a} x
$$

is the index that must be placed above the base a to give the value x.

Definition of Logs

$$
a^{y}=x \quad \Leftrightarrow \quad \log _{a} x=y
$$

* It is important to be able to convert between an index statement ($a^{y}=x$) and the corresponding log statement $\left(\log _{a} x=y\right)$.
* For example:

$$
\left(2 x^{2}+5 x\right)^{8}=3 y+2 \quad \text {... index statement }
$$

can be written in the form

$$
\log _{\left(2 x^{2}+5 x\right)}(3 y+2)=8 \quad \ldots \text { log statement. }
$$

3. Laws of Logs

Laws of Logs

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3. $\log _{a} x^{q}=q \log _{a} x$
4. $\log _{a} a=1$ and $\log _{a} 1=0$
5. $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
(Change of Base Law)

The Laws of Logs are related to the Laws of Indices and can be derived from these laws. These laws are often used in conjunction with each other.

Example 1

If $x=\log _{10} 2$ and $y=\log _{10} 3$, express in terms of x and y :
(i) $\log _{10} \sqrt{\frac{32}{27}}, \quad$ (ii) $\log _{10} \frac{4000}{9}$.

Solution

(i) $\log _{10} \sqrt{\frac{32}{27}}=\log _{10}\left(\frac{32}{27}\right)^{\frac{1}{2}}$

$$
\begin{array}{ll}
=\frac{1}{2} \log _{10} \frac{32}{27} & \ldots \text { Law } 3 \\
=\frac{1}{2}\left(\log _{10} 32-\log _{10} 27\right) & \ldots \text { Law } 2 \\
=\frac{1}{2}\left(\log _{10} 2^{5}-\log _{10} 3^{3}\right) & \\
=\frac{1}{2}\left(5 \log _{10} 2-3 \log _{10} 3\right) & \ldots \text { Law } 3 \\
=\frac{1}{2}(5 x-3 y) &
\end{array}
$$

(ii) $\log _{10} \frac{4000}{9}=\log _{10} 4000-\log _{10} 9$
... Law 2

$$
\begin{array}{ll}
=\log _{10}(1000 \times 4)-\log _{10} 3^{2} & \\
=\log _{10} 10^{3}+\log _{10} 2^{2}-\log _{10} 3^{2} & \\
=3 \text { Law } 1 \\
=3 \log _{10} 10+2 \log _{10} 2-2 \log _{10} 3 & \\
=3+2 x-2 y . & \ldots \text { Law } 3 \\
& \ldots \text { Law } 4
\end{array}
$$

Example 2

(i) Show that $\log _{a} b=\frac{1}{\log _{b} a}$.
(ii) Show that $\frac{1}{\log _{a} x}+\frac{1}{\log _{b} x}+\frac{1}{\log _{c} x}=\log _{x}(a b c)$.

Solution

(i) By Law 5, the Change of Base Law,

$$
\begin{align*}
\log _{a} b & =\frac{\log _{b} b}{\log _{b} a} \\
& =\frac{1}{\log _{b} a}
\end{align*}
$$

(ii) By part (i),

$$
\frac{1}{\log _{a} x}=\log _{x} a, \frac{1}{\log _{b} x}=\log _{x} b, \frac{1}{\log _{c} x}=\log _{x} c
$$

Then

$$
\begin{aligned}
\frac{1}{\log _{a} x}+\frac{1}{\log _{b} x}+\frac{1}{\log _{c} x} & =\log _{x} a+\log _{x} b+\log _{x} c \\
& =\log _{x}(a \times b \times c) \\
& =\log _{x}(a b c)
\end{aligned}
$$

4. Natural Logs

* Logs with a base of e, which is approximately $2 \cdot 718$, are called natural logs, as they occur frequently in nature.
* An example of a natural \log is

$$
\log _{e} x
$$

* $\quad \log _{e}$ can also be written as 'ln'. Thus we can write

$$
\log _{e} x=\ln x .
$$

* Note that $\quad \ln e=\log _{e} e=1$.
* Natural logs obey all the usual Laws of Logs, e.g.
(i) $\ln (x . y)=\ln x+\ln y$
(ii) $\ln x^{4}=4 \ln x$.

Example 3

Show that $\ln \left(x e^{2 x}\right)=2 x+\ln x$.

Solution

$$
\begin{aligned}
\ln \left(x e^{2 x}\right) & =\ln x+\ln e^{2 x} \\
& =\ln x+2 x \ln e \\
& =2 x+\ln x .
\end{aligned}
$$

5. Using a Calculator to Evaluate Logs

* On scientific calculators, there are three separate log function buttons.
* The \log function is used to calculate logs with a base of 10 , e.g. to find $\log _{10} 7 \cdot 52$, press $\left.\log 7.52 \square\right)=$ to get 0.8762 .
* The \ln function is used to calculate natural logs, i.e. $\log _{e}$, for example, to find $\ln 3.845$, press $\boxed{\ln } 3.845 \triangle) \quad=$ to get 1.34677 .
* The $\log _{\square} \square$ function is used to calculate any log, e.g. to find $\log _{1.05} 1 \cdot 89$, press $\log _{\square} \square 1.05 \square 1.89 \square$ to get 13.047 .

Exercises 8.2

1. Write each of the following as a log statement:
(i) $3^{5}=243$
(ii) $7^{4}=2401$
(iii) $1 \cdot 2^{6}=2 \cdot 985984$
(iv) $3 \cdot 5^{4 \cdot 2}=192 \cdot 7905695$
2. Write each of the following as an index statement:
(i) $\log _{5} 125=3$
(ii) $\log _{3} 6561=8$
(iii) $\log _{1 \cdot 05} 1 \cdot 795856326=12$
(iv) $\log _{2 \cdot 1} 438 \cdot 7308937=8 \cdot 2$

Write each of the following as a single log.
3. $\log _{2} x+\log _{2} y$
4. $\log _{3} a^{2}-\log _{3} b$
5. $\log _{3} a-2 \log _{3} b+3 \log _{3} c$
6. $\log _{4} x+\frac{1}{2} \log _{4} y-3 \log _{4} z$
7. If $x=\log _{2} a$, express in terms of x :
(i) $\log _{2} a^{3}$
(ii) $\log _{2} 16 a^{2}$
(iii) $\log _{2} \frac{a^{4}}{32}$.
8. If $p=\log _{27} q$, express in terms of p :
(i) q
(ii) $\log _{9} q$
(iii) $\log _{q} 9$.
9. If $\log _{a} 2=s$ and $\log _{a} 3=t$, where $a>0$, express each of the following in terms of s and t :
(i) $\log _{a} 108$
(ii) $\log _{a} 48 a^{3}$
(iii) $\log _{a} \frac{27}{32 a^{4}}$.
10. (i) If $\log _{a} x=\log _{a} y$, show that $x=y$.
(ii) Hence show that if

$$
\begin{aligned}
& \log _{4} x=\log _{2} y \\
& x=y^{2}
\end{aligned}
$$

then
11. Write each of the following as a \log statement:
(i) $e^{2 t}=p$
(ii) $e^{1+3 x}=4 y$
(iii) $e^{x^{2}-x}=3 \cdot 2$.
12. Write each of the following as an index statement:
(i) $\ln \left(x^{2}-3 x\right)=y$
(ii) $\ln (3 x+7)=2 \cdot 8$
(iii) $\ln (5 t-1)=0 \cdot 15 s$
(iv) $\ln (2 a+b)=2 \cdot 19$.

Simplify each of the following expressions.
13. $\log _{e}\left(x^{2} e^{-x}\right)$
14. $\log _{e} e^{2+\sin x}$
15. $\log _{e}\left(x^{4} e^{\cos x}\right)$
16. $\ln \left(x^{2} \sqrt{x+1}\right)$
17. $\ln \left(x^{3} e^{\sin x}\right)$
18. $\ln \left(\frac{\sqrt{x}}{e^{4 x}}\right)$.

8.3 Equations Involving Laws of Indices and Logs

A Type 1: Constant Index

1. Method

To solve for a an equation such as

$$
a^{p}=b,
$$

especially where p is not just 2 or 3 , we can proceed as follows:

* Put both sides of the equation to the power of $\frac{1}{p}$:

$$
\begin{aligned}
& a^{p}=b \\
& \left(a^{p}\right)^{\frac{1}{p}}=(b)^{\frac{1}{p}}
\end{aligned}
$$

* As the index on the LHS is now 1, we get:

$$
a=b^{\frac{1}{p}}
$$

Example 1

Solve the equation

$$
(3+2 x)^{7 \cdot 3}=141 \cdot 812
$$

giving your answer correct to three decimal places.

Solution

$$
\begin{aligned}
& (3+2 x)^{7 \cdot 3}=141 \cdot 812 \\
& 3+2 x=141 \cdot 812^{\frac{1}{7 \cdot 3}} \\
& 3+2 x=1 \cdot 9713 \\
& 2 x=-1 \cdot 0287 \\
& x=-0 \cdot 514
\end{aligned} \quad \text {... by calculator }
$$

B Type 2: Unknown in Index: Common Base Possible

1. Common Base Possible: Single Power = Single Power

* Some equations with the unknown in the index can be written with a single power on each side of the equation.
* With some of these, it is possible to write each side with the same base.
* For example, the equation

$$
2^{x}=\frac{1}{64}
$$

can be written

$$
2^{x}=2^{-6}
$$

* In this case, we can put the indices equal to get

$$
x=-6 \text {. }
$$

* Alternatively, the equation $2^{x}=\frac{1}{64}$ can be converted to log form:

$$
x=\log _{2} \frac{1}{64}=-6
$$

Example 2

Solve for $x \in \mathbb{R}$,

$$
8^{1-2 x}=\sqrt{\frac{1}{32^{x}}}
$$

Solution

$$
\begin{array}{ll}
\left(2^{3}\right)^{1-2 x}=\left(32^{-x}\right)^{\frac{1}{2}} & \\
2^{3-6 x}=\left(\left(2^{5}\right)^{-x}\right)^{\frac{1}{2}} & \text {... write each side with a base of } 2 \\
2^{3-6 x}=\left(2^{-5 x}\right)^{\frac{1}{2}} & \\
2^{3-6 x}=2^{-\frac{5 x}{2}} & \text {... now each side is a power with the same base } \\
3-6 x=-\frac{5 x}{2} & \text {... equating indices } \\
6-12 x=-5 x & \\
6=7 x & \\
x=\frac{6}{7} &
\end{array}
$$

2. Evaluating Logs Without Using a Calculator

If the base of a \log and the value of the power can be written in terms of the same base, the \log can be calculated without using a calculator.

Example 3

Evaluate, without using a calculator, $\log _{3} \sqrt{27}$.

Solution

Let $\log _{3} \sqrt{27}=x$.
Then $\quad 3^{x}=\sqrt{27}$

$$
\begin{aligned}
& 3^{x}=\left(3^{3}\right)^{\frac{1}{2}} \\
& 3^{x}=3^{\frac{3}{2}} \\
& x=\frac{3}{2}
\end{aligned}
$$

C Type 3: Unknown in Index: Common Base Not Possible

1. Using Logs to Solve Index Equations

* Logs can be used to solve equations with the unknown in the index, if the base and the value cannot be easily expressed as powers with the same base.
* For example, the equation

$$
7^{4 x-3}=5
$$

can be solved by using logs, because it is not possible to find a common base for the 7 and the 5 .

* Two different approaches exist: converting to a log statement and taking logs on both sides. They are shown in the example below.

Example 4

Solve the equation

$$
7^{4 x-3}=5
$$

for $x \in \mathbb{R}$. Give your answer correct to three decimal places.

Solution

Method 1: Convert to a Log Statement

$7^{4 x-3}=5$
$\log _{7} 5=4 x-3 \quad$... converting to a log statement
$0 \cdot 8271=4 x-3$
... using the $\log _{\square} \square$ function on your calculator

$$
4 x=3 \cdot 8271
$$

$x=0.957$
Method 2: Taking Logs (natural logs) on Both Sides

$$
7^{4 x-3}=5
$$

```
\(\ln 7^{4 x-3}=\ln 5\)
... taking \(\ln\) on each side
\((4 x-3) \ln 7=\ln 5\)
\(4 x-3=\frac{\ln 5}{\ln 7}\)
\(4 x-3=0.8271\)
\(4 x=3 \cdot 8271\)
\(x=0.957\).
```


2. More Advanced Equations

* If an equation contains unknowns in two separate powers, with no common base possible, it is more convenient to take logs on both sides to find the solution.
* Example 5 shows one of these equations.

Example 5

Solve the equation

$$
4500(1 \cdot 045)^{t}=6300(1 \cdot 035)^{t+2}
$$

for $t \in \mathbb{R}$. Give your answer correct to three decimal places.

Solution

$$
\begin{aligned}
& 4500(1 \cdot 045)^{t}=6300(1 \cdot 035)^{t+2} \\
& (1 \cdot 045)^{t}=1 \cdot 4(1 \cdot 035)^{t+2} \\
& \ln (1 \cdot 045)^{t}=\ln 1 \cdot 4(1 \cdot 035)^{t+2} \\
& t \ln 1 \cdot 045=\ln 1 \cdot 4+\ln (1 \cdot 035)^{t+2} \\
& t \ln 1 \cdot 045=\ln 1 \cdot 4+(t+2) \ln 1 \cdot 035 \\
& 0 \cdot 04402 t=0 \cdot 33647+(t+2)(0 \cdot 03440) \\
& 0 \cdot 04402 t=0 \cdot 33647+0 \cdot 03440 t+0 \cdot 06880 \\
& 0 \cdot 00962 t=0 \cdot 40527 \\
& t=42 \cdot 128
\end{aligned}
$$

D Type 4: Equations which Become Quadratic

1. Equations with Three or More Terms

* An equation such as

$$
2^{2 x+3}-33\left(2^{x}\right)+4=0
$$

can be converted to a quadratic equation by letting y be the basic power present, i.e.

$$
y=2^{x} .
$$

* To write $2^{2 x+3}$ in terms of $y=2^{x}$:

$$
\begin{aligned}
2^{2 x+3} & =2^{2 x} \cdot 2^{3} \\
& =\left(2^{x}\right)^{2}(8) \\
& =8 y^{2}
\end{aligned}
$$

* We can now write the given equation as

$$
8 y^{2}-33 y+4=0 .
$$

* We now solve this equation for y. Don't forget to finish by calculating the corresponding values of x.

Example 6

Solve the equation

$$
e^{2 x+1}-14 \cdot 1 e^{x}+2 \cdot 7=0
$$

for $x \in \mathbb{R}$. Give your answers correct to two decimal places.

Solution

Let $y=e^{x}$.
Then $\quad e^{2 x+1}=e^{2 x} \cdot e^{1}$

$$
\begin{aligned}
& =e\left(e^{x}\right)^{2} \\
& =e y^{2}
\end{aligned}
$$

Then the equation can be written:

$$
\begin{aligned}
& e y^{2}-14 \cdot 1 y+2 \cdot 7=0 \\
& y=\frac{14 \cdot 1 \pm \sqrt{(-14 \cdot 1)^{2}-4(e)(2 \cdot 7)}}{2(e)} \\
& y=\frac{14 \cdot 1 \pm 13 \cdot 017}{2 e} \\
& y=4.988 \quad \text { or } \quad y=0.199 \\
& e^{x}=4.988 \quad \text { or } \quad e^{x}=0 \cdot 199 \\
& x=\ln 4.988 \quad \text { or } \quad x=\ln 0.199 \\
& x=1.61 \quad \text { or } \quad x=-1.61 .
\end{aligned}
$$

$$
[a=e, b=-14 \cdot 1, c=2 \cdot 7]
$$

Exercises 8.3

Solve the following equations for $x \in \mathbb{R}$. Give your answers correct to two decimal places.

1. $x^{6}=80$
2. $x^{5.2}=11.7$
3. $(x+3)^{5}=21 \cdot 8$
4. $(x+5)^{7}=98$
5. $(2 x-1)^{1.3}=273$
6. $(3 x+2)^{4 \cdot 6}=823 \cdot 6$

Solve the following equations for $x \in \mathbb{R}$.
7. $2^{x}=32$
8. $3^{x}=\frac{1}{27}$
9. $2^{3 x-1}=\frac{1}{64}$
10. $3^{2 x+1}=\sqrt{27}$
11. $9^{x+2}=\frac{1}{27^{2 x+5}}$
12. $4^{2 x-1}=\sqrt{\frac{2}{8^{x+3}}}$

Without using a calculator, evaluate each of the following logs.
13. $\log _{4} 16$
14. $\log _{3} \sqrt{27}$
15. $\log _{4} 128$
16. $\log _{16} \sqrt{128}$

Solve the following equations for $x \in \mathbb{R}$. Where appropriate, give your answers correct to two decimal places.
17. $2 \cdot 6^{x}=9 \cdot 47$
18. $5 \cdot 18^{x}=167$
19. $0 \cdot 92^{x}=0 \cdot 05$
20. $3 \cdot 82^{2 x+1}=39 \cdot 7$
21. $1 \cdot 47^{3 x-1}=12 \cdot 8$
22. $10 \cdot 4^{2-x}=43 \cdot 7$
23. $e^{2 x+1}=65 \cdot 9$
24. $e^{3 x+4}=87 \cdot 23$
25. $8 \cdot 9 e^{3 x+7}=241 \cdot 87$
26. Solve the equation

$$
7\left(2^{x+5}\right)=1 \cdot 4\left(2^{2 x+1}\right)
$$

for $x \in \mathbb{R}$. Give your answer correct to two decimal places.
27. Solve the equation

$$
1.3 \times 10^{4} \times e^{3 t-1}=6.5 \times 10^{5} \times e^{t+3}
$$

for $t \in \mathbb{R}$. Give your answer correct to two decimal places.
28. Solve the equation

$$
8 \cdot 9\left(e^{4 x+7}\right)=32 \cdot 5\left(e^{3 x-1}\right)
$$

for $x \in \mathbb{R}$. Give your answer correct to two decimal places.
29. Solve the equation

$$
3 \cdot 2(2 \cdot 56)^{x}=18 \cdot 9(1 \cdot 73)^{x+2}
$$

for $x \in \mathbb{R}$. Give your answer correct to two decimal places.
30. Solve the equation

$$
2^{2 x}-20\left(2^{x}\right)+64=0
$$

for $x \in \mathbb{R}$.
31. Solve the equation

$$
3^{2 x+5}-4\left(3^{x+2}\right)+1=0
$$

for $x \in \mathbb{R}$.
32. Solve the equation

$$
3^{2 x+1}-28\left(3^{x}\right)+9=0,
$$

for $x \in \mathbb{R}$.
33. Solve the equation

$$
\frac{2}{e^{x}}=e^{x}-1
$$

for $x \in \mathbb{R}$, correct to two decimal places.

Solutions to Exercises

Exercises 8.2

1. (i) $3^{5}=243$

$$
\log _{3} 243=5
$$

$$
\begin{aligned}
& =4 \log _{2} a-\log _{2} 2^{5} \\
& =4 x-5 \log _{2} 2=4 x-5
\end{aligned}
$$

(ii) $7^{4}=2401$
$\log _{7} 2401=4$
(iii) $1 \cdot 2^{6}=2 \cdot 985984$
$\log _{1 \cdot 2} 2 \cdot 985984=6$
(iv) $3 \cdot 5^{4 \cdot 2}=192 \cdot 7905695$
$\log _{3 \cdot 5} 192 \cdot 7905695=4 \cdot 2$
2. (i) $\log _{5} 125=3$

$$
5^{3}=125
$$

(ii) $\log _{3} 6561=8$
$3^{8}=6561$
(iii) $\log _{1.05} 1 \cdot 795856326=12$
$1 \cdot 05^{12}=1 \cdot 795856326$
(iv) $\log _{2 \cdot 1} 438 \cdot 7308937=8 \cdot 2$
$2 \cdot 1^{8.2}=438 \cdot 7308937$
3. $\log _{2} x+\log _{2} y=\log _{2} x y$
4. $\log _{3} a^{2}-\log _{3} b=\log _{3} \frac{a^{2}}{b}$
5. $\log _{3} a-2 \log _{3} b+3 \log _{3} c$

$$
\begin{aligned}
& =\log _{3} a-\log _{3} b^{2}+\log _{3} c^{3} \\
& =\log _{3} \frac{a c^{3}}{b^{2}}
\end{aligned}
$$

6. $\log _{4} x+\frac{1}{2} \log _{4} y-3 \log _{4} z$

$$
\begin{aligned}
& =\log _{4} x+\log _{4} y^{\frac{1}{2}}-\log _{4} z^{3} \\
& =\log _{4} \frac{x \sqrt{y}}{z^{3}}
\end{aligned}
$$

7. (i) $\log _{2} a^{3}=3 \log _{2} a=3 x$
(ii) $\log _{2} 16 a^{2}=\log _{2} 16+\log _{2} a^{2}$

$$
\begin{aligned}
& =\log _{2} 2^{4}+2 \log _{2} a \\
& =4 \log _{2} 2+2 x=4+2 x
\end{aligned}
$$

(iii) $\log _{2} \frac{a^{4}}{32}=\log _{2} a^{4}-\log _{2} 32$
8. (i) $p=\log _{27} q$
$q=27^{p}$
(ii) $\log _{9} q=\log _{9} 27^{p}=p \log _{9} 27$

Let $\log _{9} 27=x$

$$
\begin{aligned}
& 9^{x}=27 \\
& \left(3^{2}\right)^{x}=3^{3} \\
& 3^{2 x}=3^{3} \\
& 2 x=3 \\
& x=\frac{3}{2}
\end{aligned}
$$

Then

$$
\log _{9} q=\frac{3}{2} p
$$

(iii)
$\log _{q} 9=\frac{\log _{9} 9}{\log _{9} q}=\frac{1}{\log _{9} q}=\frac{1}{\frac{3}{2} p}=\frac{2}{3 p}$.
9. (i) $\log _{a} 108=\log _{a}(4 \times 27)$

$$
\begin{aligned}
& =\log _{a} 2^{2}+\log _{a} 3^{3} \\
& =2 \log _{a} 2+3 \log _{a} 3 \\
& =2 s+3 t
\end{aligned}
$$

(ii) $\log _{a} 48 a^{3}=\log _{a} 48+\log _{a} a^{3}$

$$
\begin{aligned}
& =\log _{a}(16 \times 3)+3 \log _{a} a \\
& =\log _{a} 2^{4}+\log _{a} 3+3 \\
& =4 \log _{a} 2+t+3 \\
& =4 s+t+3
\end{aligned}
$$

(iii) $\log _{a} \frac{27}{32 a^{4}}=\log _{a} 27-\log _{a} 32 a^{4}$

$$
\begin{aligned}
& =\log _{a} 3^{3}-\log _{a} 2^{5}-\log _{a} a^{4} \\
& =3 \log _{a} 3-5 \log _{a} 2-4 \log _{a} a \\
& =3 t-5 s-4
\end{aligned}
$$

10. (i) $\log _{a} x=\log _{a} y$
$\log _{a} x-\log _{a} y=0$
$\log _{a} \frac{x}{y}=0$
$\frac{x}{y}=a^{0}=1$
$x=y$
(ii) $\log _{4} x=\log _{2} y$
$\log _{4} x=\frac{\log _{4} y}{\log _{4} 2}$
$\log _{4} x=\frac{\log _{4} y}{\frac{1}{2}}=2 \log _{4} y$
$\log _{4} x=\log _{4} y^{2}$
$x=y^{2}$
11. (i) $e^{2 t}=p$
$\log _{e} p=2 t$
$\ln p=2 t$
(ii) $e^{1+3 x}=4 y$
$\log _{e} 4 y=1+3 x$
$\ln 4 y=1+3 x$
(iii) $e^{x^{2}-x}=3 \cdot 2$
$\log _{e} 3 \cdot 2=x^{2}-x$
$\ln 3 \cdot 2=x^{2}-x$
12. (i) $\ln \left(x^{2}-3 x\right)=y$
$e^{y}=x^{2}-3 x$
(ii) $\ln (3 x+7)=2 \cdot 8$

$$
e^{2.8}=3 x+7
$$

(iii) $\ln (5 t-1)=0 \cdot 15 x$

$$
e^{0.15 x}=5 t-1
$$

(iv) $\ln (2 a+b)=2 \cdot 19$

$$
e^{2 \cdot 19}=2 a+b
$$

13. $\log _{e}\left(x^{2} e^{-x}\right)=\log _{e} x^{2}+\log _{e} e^{-x}$

$$
\begin{aligned}
& =2 \log _{e} x+(-x) \log _{e} e \\
& =2 \log _{e} x-x
\end{aligned}
$$

14. $\log _{e} e^{\sin x+2}=(\sin x+2) \log _{e} e$

$$
=\sin x+2
$$

15. $\log _{e}\left(x^{4} e^{\cos x}\right)=\log _{e} x^{4}+\log _{e} e^{\cos x}$

$$
\begin{aligned}
& =4 \log _{e} x+(\cos x) \log _{e} e \\
& =4 \log _{e} x+\cos x
\end{aligned}
$$

16. $\ln \left(x^{2} \sqrt{x+1}\right)=\ln x^{2}+\ln (x+1)^{\frac{1}{2}}$

$$
=2 \ln x+\frac{1}{2} \ln (x+1)
$$

17. $\ln \left(x^{3} e^{\sin x}\right)=\ln x^{3}+\ln e^{\sin x}$

$$
\begin{aligned}
& =3 \ln x+\sin x(\ln e) \\
& =3 \ln x+\sin x
\end{aligned}
$$

18. $\ln \left(\frac{\sqrt{x}}{e^{4 x}}\right)=\ln \sqrt{x}-\ln e^{4 x}$

$$
\begin{aligned}
& =\ln x^{\frac{1}{2}}-(4 x) \ln e \\
& =\frac{1}{2} \ln x-4 x
\end{aligned}
$$

Exercises 8.3

1. $x^{6}=80$
$x=80^{\frac{1}{6}}=2 \cdot 08$
2. $x^{5.2}=11 \cdot 7$
$x=11 \cdot 7^{\frac{1}{5 \cdot 2}}=1 \cdot 60$
3. $(x+3)^{5}=21 \cdot 8$
$x+3=21 \cdot 8^{\frac{1}{5}}=1 \cdot 85$
$x=-1 \cdot 15$
4. $(x+5)^{7}=98$
$x+5=98^{\frac{1}{7}}=1.93$
$x=-3 \cdot 07$
5. $(2 x-1)^{1 \cdot 3}=273$
$2 x-1=273^{\frac{1}{1 \cdot 3}}=74 \cdot 812$
$2 x=75 \cdot 812$
$x=37.91$
6. $(3 x+2)^{4 \cdot 6}=823 \cdot 6$
$3 x+2=823 \cdot 6^{\frac{1}{4 \cdot 6}}=4 \cdot 303$
$3 x=2 \cdot 303$
$x=0.77$
7. $2^{x}=32$
$2^{x}=2^{5}$
$x=5$
8. $3^{x}=\frac{1}{27}$
$3^{x}=\frac{1}{3^{3}}$
$3^{x}=3^{-3}$
$x=-3$
9. $2^{3 x-1}=\frac{1}{64}$
$2^{3 x-1}=\frac{1}{2^{6}}$
$2^{3 x-1}=2^{-6}$
$3 x-1=-6$
$3 x=-5$
$x=-\frac{5}{3}$
10. $3^{2 x+1}=\sqrt{27}$
$3^{2 x+1}=\left(3^{3}\right)^{\frac{1}{2}}$
$3^{2 x+1}=3^{\frac{3}{2}}$
$2 x+1=\frac{3}{2}$
$2 x=\frac{1}{2}$
$x=\frac{1}{4}$
11. $9^{x+2}=\frac{1}{27^{x+5}}$
$\left(3^{2}\right)^{x+2}=\frac{1}{\left(3^{3}\right)^{2 x+5}}$
$3^{2 x+4}=\frac{1}{3^{6 x+15}}$
$3^{2 x+4}=3^{-6 x-15}$
$2 x+4=-6 x-15$
$8 x=-19$
$x=-\frac{19}{8}$
12. $4^{2 x-1}=\sqrt{\frac{2}{\left(2^{3}\right)^{x+3}}}$
$\left(2^{2}\right)^{2 x-1}=\sqrt{\frac{2}{2^{3 x+9}}}$
$2^{4 x-2}=\sqrt{2^{1-(3 x+9)}}$
$2^{4 x-2}=\left(2^{-3 x-8}\right)^{\frac{1}{2}}$
$2^{4 x-2}=2^{\frac{1}{2}(-3 x-8)}$
$4 x-2=\frac{1}{2}(-3 x-8)$
$8 x-4=-3 x-8$
$11 x=-4$
$x=-\frac{4}{11}$
13. $\log _{4} 16=x$
$4^{x}=16$
$4^{x}=4^{2}$
$x=2$
14. $\log _{3} \sqrt{27}=x$
$3^{x}=\left(3^{3}\right)^{\frac{1}{2}}$
$3^{x}=3^{\frac{3}{2}}$
$x=\frac{3}{2}$
15. $\log _{4} 128=x$
$\left(2^{2}\right)^{x}=2^{7}$
$2^{2 x}=2^{7}$
$2 x=7$
$x=\frac{7}{2}$
16. $\log _{16} \sqrt{128}=x$
$\left(2^{4}\right)^{x}=\left(2^{7}\right)^{\frac{1}{2}}$
$2^{4 x}=2^{\frac{7}{2}}$
$4 x=\frac{7}{2}$
$x=\frac{7}{8}$
17. $2 \cdot 6^{x}=9 \cdot 47$
$x=\log _{2 \cdot 6} 9 \cdot 47$
$x=2 \cdot 35$
18. $5 \cdot 18^{x}=167$
$x=\log _{5 \cdot 18} 167$
$x=3 \cdot 11$
19. $0.92^{x}=0.05$
$\log _{0.92} 0 \cdot 05=x$
$x=35.92$
20. $3 \cdot 82^{2 x+1}=39 \cdot 7$
$\log _{3.82} 39 \cdot 7=2 x+1$
$2 \cdot 747=2 x+1$
$2 x=1.747$
$x=0 \cdot 87$
21. $1 \cdot 47^{3 x-1}=12 \cdot 8$
$\log _{1 \cdot 47} 12 \cdot 8=3 x-1$
$6 \cdot 617=3 x-1$
$3 x=7 \cdot 617$
$x=2 \cdot 54$
22. $10 \cdot 4^{2-x}=43 \cdot 7$
$\log _{10 \cdot 4} 43 \cdot 7=2-x$
$1 \cdot 613=2-x$
$x=0 \cdot 39$
23. $e^{2 x+1}=65 \cdot 9$
$\ln 65 \cdot 9=2 x+1$
$4 \cdot 188=2 x+1$
$2 x=3 \cdot 188$
$x=1.59$
24. $e^{3 x+4}=87 \cdot 23$
$\ln 87 \cdot 23=3 x+4$
$4 \cdot 469=3 x+4$
$3 x=0 \cdot 469$
$x=0 \cdot 16$
25. $8 \cdot 9 e^{3 x+7}=241 \cdot 87$
$e^{3 x+7}=27 \cdot 1764$
$\ln 27 \cdot 1764=3 x+7$
$3 \cdot 302=3 x+7$
$3 x=-3 \cdot 697$
$x=-1 \cdot 23$
26. $7\left(2^{x+5}\right)=1 \cdot 4\left(2^{2 x+1}\right)$
$\frac{7}{1 \cdot 4}=\frac{2^{2 x+1}}{2^{x+5}}$
$5=2^{x-4}$
$\log _{2} 5=x-4$
$2 \cdot 32=x-4$
$x=6 \cdot 32$
27. $1 \cdot 3 \times 10^{4} \times e^{3 t-1}=6.5 \times 10^{5} \times e^{t+3}$
$\frac{e^{3 t-1}}{e^{t+3}}=\frac{6 \cdot 5 \times 10^{5}}{1 \cdot 3 \times 10^{4}}$
$e^{2 t-4}=50$
$\ln 50=2 t-4$
$3 \cdot 912=2 t-4$
$2 t=7.912$
$t=3.96$
28. $8 \cdot 9\left(e^{4 x+7}\right)=32 \cdot 5\left(e^{3 x-1}\right)$
$\frac{e^{4 x+7}}{e^{3 x-1}}=\frac{32 \cdot 5}{8 \cdot 9}$
$e^{x+8}=3 \cdot 652$
$\ln 3 \cdot 652=x+8$
$1 \cdot 295=x+8$
$x=-6 \cdot 70$
29. $3 \cdot 2(2 \cdot 56)^{x}=18 \cdot 9(1 \cdot 73)^{x+2}$
$\ln \left[3 \cdot 2(2 \cdot 56)^{x}\right]=\ln \left[18 \cdot 9(1 \cdot 73)^{x+2}\right]$
$\ln 3 \cdot 2+\ln 2 \cdot 56^{x}=\ln 18 \cdot 9+\ln 1 \cdot 73^{x+2}$
$\ln 3 \cdot 2+x \ln 2 \cdot 56$

$$
=\ln 18 \cdot 9+(x+2) \ln 1 \cdot 73
$$

$1 \cdot 163+0 \cdot 94 x=2 \cdot 939+0 \cdot 548(x+2)$
$0 \cdot 392 x=2 \cdot 872$
$x=7 \cdot 33$
30. Let $y=2^{x}$. Then
$2^{2 x}=\left(2^{x}\right)^{2}=y^{2}$
The equation is

$$
\begin{aligned}
& y^{2}-20 y+64=0 \\
& (y-4)(y-16)=0 \\
& y=4 \quad \text { or } \quad y=16 \\
& 2^{x}=2^{2} \quad \text { or } \quad 2^{x}=2^{4} \\
& x=2 \quad \text { or } \quad x=4
\end{aligned}
$$

31. Let $y=3^{x}$. Then
$3^{x+2}=3^{x} \cdot 3^{2}=9 y$
$3^{2 x+5}=\left(3^{x}\right)^{2} \cdot 3^{5}=243 y^{2}$
The equation is

$$
\begin{aligned}
& 243 y^{2}-36 y+1=0 \\
& (27 y-1)(9 y-1)=0 \\
& 27 y-1=0 \quad \text { or } 9 y-1=0 \\
& y=\frac{1}{27} \text { or } y=\frac{1}{9} \\
& 3^{x}=3^{-3} \text { or } 3^{x}=3^{-2} \\
& x=-3 \quad \text { or } x=-2
\end{aligned}
$$

32. Let $y=3^{x}$. Then
$3^{2 x+1}=3\left(3^{x}\right)^{2}=3 y^{2}$
The equation is

$$
\begin{aligned}
& 3 y^{2}-28 y+9=0 \\
& (3 y-1)(y-9)=0 \\
& 3 y-1=0 \quad \text { or } \quad y-9=0 \\
& y=\frac{1}{3} \quad \text { or } y=9 \\
& 3^{x}=3^{-1} \quad \text { or } 3^{x}=3^{2} \\
& x=-1 \quad \text { or } x=2 .
\end{aligned}
$$

33. Let $y=e^{x}$. Then the equation can be written:

$$
\begin{aligned}
& \frac{2}{y}=y-1 \\
& 2=y^{2}-y
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}-y-2=0 \\
& (y-2)(y+1)=0 \\
& y=2 \quad \text { or } \quad y=-1
\end{aligned}
$$

$$
\begin{array}{ll}
e^{x}=2 \text { or } & e^{x}=-1 \\
& \text { (not pos } \\
x=\ln 2 & \\
x=0 \cdot 70 .
\end{array}
$$

