■INSTITUTE OF EDUCATION

Subject: Chemistry

TEACHER: Enda Dowd

ACADEMIC LEVEL: Higher

ACADEMIC COURSE: Leaving Certificate

ACADEMIC YEAR: 2021 - 2022

TOPIC: Acids and Bases

Unauthorised publication, distribution or reproduction of these notes is prohibited.

[≝]INSTITUTE^{of} EDUCATION

CONTENTS

Notes

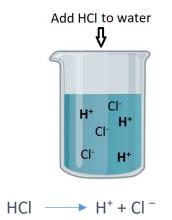
Questions

1 – 9

10 - 14

© Enda Dowd. Leaving Certificate Chemistry. 2021-22.

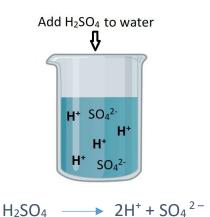
Acids and Bases


Arrhenius

Q: Define an acid, according to the Arrhenius theory

An acid is a substance that <u>dissociates in water to produce H⁺ ions</u>

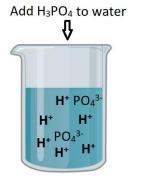
Examples:


Notice:

HCl is a monobasic acid -

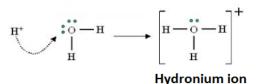
each molecule dissociates to

produce one H⁺ ion in solution



Notice:

H₂SO₄ is a <u>dibasic acid</u> – each molecule dissociates to produce <u>two H⁺ ions</u> in solution


Arrhenius (1859-1927)

$H_3PO_4 \longrightarrow 3H^+ + PO_4^{3-}$

Notice:

 H_3PO_4 is a <u>tribasic acid</u> – each molecule dissociates to produce <u>three H⁺ ions</u> in solution

Q: Write an equation to show the dissociation of hydrogen chloride in water

Important: In reality, the H^+ ion formed reacts with a molecule of water to form H_3O^+ (Hydronium ion)

HCl + H₂O \longrightarrow Cl⁻ + H₃O⁺

Q: Write an equation to show the dissociation of ethanoic acid in water

 $CH_{3}COOH + H_{2}O \longrightarrow CH_{3}COO^{-} + H_{3}O^{+}$

Q: Write an equation to show the dissociation of sulfuric acid in water

$$H_2SO_4 + 2H_2O \longrightarrow SO_4^{2-} + 2H_3O^+$$

Note: Sulfuric acid is dibasic – it dissociates in two stages:

1 st dissociation:	H_2SO_4	+	H ₂ O	 HSO ₄ [–]	+	H ₃ O ⁺
2 nd dissociation:	HSO ₄ [–]	+	H ₂ O	 SO 4 ²⁻	+	H ₃ O ⁺

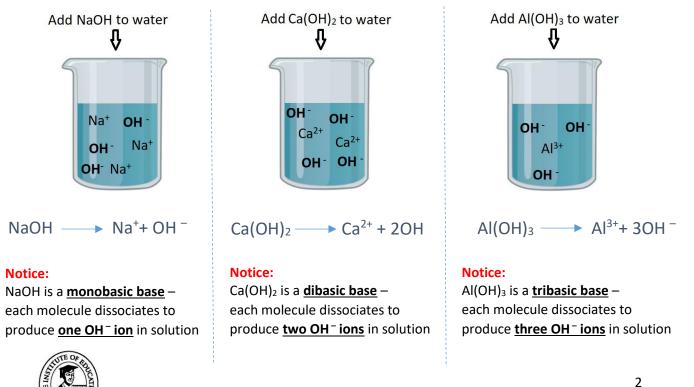
Q: Write an equation to show the dissociation of phosphoric acid in water

$$H_3PO_4 + 3H_2O \longrightarrow PO_4^{3-} + 3H_3O^+$$

Note: Phosphoric acid is tribasic – it dissociates in three stages:

1 st dissociation:	H ₃ PO ₄ +	H ₂ O	$H_2PO_4^- + H_3O^+$
2 nd dissociation:	H ₂ PO ₄ ⁻ +	H ₂ O	$HPO_4^{2-} + H_3O^+$
3 rd dissociation:	HPO4 ²⁻ +	H ₂ O	PO ₄ ³⁻ + H ₃ O ⁺

Note: The dissociation of an acid HA in water can be represented in general as:


 $HA + H_2O \longrightarrow A^- + H_3O^+$

Q: Define a base, according to the Arrhenius theory

• A base is a substance that dissociates in water to produce OH (hydroxide) ions

Note: A base dissolved in water in known as an alkali

Examples:

Bronsted (1879-1947)

Lowry (1874-1936)

Bronsted - Lowry

Q: Define an acid according to the Bronsted-Lowry theory?

• An acid is a **proton (H⁺) donor** (loses a proton)

Example: HCl + H₂O \longrightarrow Cl⁻ + H₃O⁺ Gives away a proton (H⁺) to H₂O..... HCl is an acid

Q: Define a base according to the Bronsted Lowry theory?

• A base is a **proton (H⁺) acceptor** (takes in a proton)

Example: $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$ Takes in a proton (H⁺) from H₂O.....NH₃ is a base

Q: What is an amphoteric substance?

• An amphoteric substance is a substance that can act as either an acid or a base

Example: <u>Water</u> is an amphoteric substance

Q: Compare the Arrhenius theory with the Bronsted-Lowry theory of acids and bases

- <u>Arrhenius</u> theory is <u>limited to aqueous solutions</u> i.e. reactions in water
 <u>Bronsted-Lowry</u> theory <u>also applies</u> to reactions in <u>other solvents and gaseous reactions</u>
- 2) Substances such as <u>NH₃</u> would <u>not</u> be classified as <u>a base under</u> the <u>Arrhenius</u> theory but are classified as <u>a base under</u> the <u>Bronsted-Lowry</u> theory
- The <u>Arrhenius</u> theory <u>cannot explain how a substance can be amphoteric</u>, but the <u>Bronsted-Lowry theory can</u>

[₿]INSTITUTE DUCATION

Strong acids Vs weak acids

	Arrhenius	Bronsted – Lowry	Examples
Strong acid	 <u>Dissociates fully</u> in water to produce H⁺ions 	- <u>Good</u> proton donor	-Hydrochloric acid (HCl) - Sulfuric acid (H2SO4) - Nitric acid (HNO3)
Weak acid	 Dissociates only slightly in water to produce H⁺ ions 	- <u>Poor</u> proton donor	- All carboxylic acids Example: Ethanoic acid (CH ₃ COOH)

Strong bases Vs weak bases

	Arrhenius	Bronsted – Lowry	Examples
Strong base	 <u>Dissociates fully</u> in water to produce OH⁻ ions 	- <u>Good</u> proton acceptor	 Sodium hydroxide (NaOH) Potassium hydroxide (KOH) Calcium hydroxide (Ca(OH)₂) (Limewater)
Weak base	 Dissociates only slightly in water to produce OH⁻ ions 	- <u>Poor</u> proton acceptor	 Sodium carbonate (Na₂CO₃) Ammonium hydroxide (NH₄OH) (solution of NH₃ in water)

Conjugate acids and bases

Q: What is a conjugate acid?

• A conjugate acid is the substance formed when <u>a proton (H⁺) is added to a base</u>

÷

Note: If asked to give the conjugate acid in a question, you are being shown a base

Example: Identify the conjugate acid in the following:

a)
$$NH_3$$
 NH_3 $\pm H^{+} \rightarrow NH_{4}^{+}$
b) HSO_4^{-} $HSO_{24}^{-} \pm H^{+} \rightarrow H_2SO_{24}$
c) SO_4^{2-} $SO_{24}^{2-} \pm H^{+} \rightarrow HSO_{24}$
d) H_2O H_2O $\pm H^{+} \rightarrow H_3O^{+}$
e) $HC_2O_4^{-}$ $HC_2O_4^{-} \pm H^{+} \rightarrow H_2C_3O_{24}$

Unauthorised publication, distribution or reproduction of these notes is prohibited.

[₿]INSTITUTE ^{OF} EDUCATION

Q: What is a conjugate base?

• A conjugate base is the substance formed when a proton (H⁺) is taken from an acid

Note: If asked to give the conjugate base in a question, you are being shown an acid

Example: Identify the conjugate base in the following:

a) HCI
$$HCL \xrightarrow{-H^{+}} CL^{-}$$

b) $H_{2}O$ $H_{2}O \xrightarrow{-H^{+}} OH^{-}$
c) $CH_{3}COOH$ $CH_{3}COOH \xrightarrow{-H^{+}} CH_{3}COO^{-}$
d) HSO_{4}^{-} $HSO_{4}^{-} \xrightarrow{-H^{+}} SO_{4}^{2-}$

e)
$$H_2SO_4$$
 H_2SO_4 $-H^2$ HSO_4

Q: Give the (i) conjugate acid (ii) conjugate base of HPO_4^2 ?

i)
$$HPO_{\mu}^{2-} \xrightarrow{+H^{*}} H_{2}PO_{\mu}^{-}$$

ii) $HPO_{\mu}^{2-} \xrightarrow{-H^{*}} PO_{\mu}^{3-}$

Q: Give the (i) conjugate acid (ii) conjugate base of OH -?

$$i) OH^{-} \xrightarrow{HH^{+}} H_{0}$$

$$ii) OH^{-} \xrightarrow{-H^{+}} O^{2}$$

Q: Give the (i) conjugate acid (ii) conjugate base of $HC_2O_4^-$?

i)
$$HC_2O_4 \xrightarrow{+H^+} H_2C_2O_4$$

i) $HC_2O_4 \xrightarrow{-H^+} C_2O_4$
ii) $HC_2O_4 \xrightarrow{-H^+} C_2O_4$

Unauthorised publication, distribution or reproduction of these notes is prohibited.

Note: The stronger the acid – the weaker its conjugate base

The weaker the acid – the stronger its conjugate base

Example: Sulfuric acid is a strong dibasic acid. The formula HA represents a weak monobasic acid.

- a) What is the conjugate base of (i) sulfuric acid (ii) HA?
- b) Which of these conjugate bases is the stronger? Explain

b) A⁻ is the stronger conjugate base – it is the conjugate base of a weak acid; it has a high tendency to accept a proton and form the HA acid again

HSO₄⁻ is the weaker conjugate base – it is the conjugate base of a strong acid; it has little tendency to accept a proton and from the H₂SO₄ acid again

Q: What is a conjugate acid-base pair?

A conjugate acid-base pair is an acid and a base that differ by one proton (H⁺)

Examples of conjugate acid-base pairs: HCI and CI⁻ HNO₃ and NO₃⁻ NH₃ and NH₄⁺

Example: In the following reaction identify which species are acting as acids and which are acting as bases

 $HNO_3 + H_2F_2 \implies H_2NO_3^+ + HF_2^-$

ROUGH WORK

Also indicate the conjugate acid-base pairs

Acids: H, F, ; H, NO,

Bases: HIF, ; HINO,

(onjugate and - base pairs i) HINDz and HI, NOz H2NOz -H+>HNOz

Unauthorised publication, distribution or reproduction of these notes is prohibited.

©Enda Dowd. Leaving Certificate Chemistry. 2020-21.

Forward Reaction

HNO3 +H HaNO3+ Base -H+ Hzfz ---> HFz-

Reverse Reaction:

2) H_1F_1 and $HF_1^ H_{F_1}^ H_{2}F_{3}^-$ Bass 6

Example: Identify two species acting as acids and also their conjugate bases in the following system ROUGH WORK

$H_2S + O^{2-} \implies OH^- + SH^-$

Acids: H_2S ; OH^- (onjugate bases: SH^- ; O^{2-}

Forward Reaction: Has -Ht SH-Acio Conjugate Base

Reverse Reaction: OH -H+ O²-Acid Conjugate Base

Example: Show by writing a balanced equation for its dissociation in water, that the conjugate base of sulfuric acid is itself an acid

• Conjugate base of sulfuric acid:

 $H_{1}SO_{4} \xrightarrow{-H^{+}} HSO_{4}^{-}$ conjugate base

Equation for dissociation of HSO₄⁻ in water:

 $HSO_{1}^{-} + H_{2}O \longrightarrow SO_{4}^{2-} + H_{3}O^{1}$

When dissociated in water, HSO₄⁻ donates a proton (H⁺) to H₂O and becomes SO₄²⁻.....it is behaving as an acid

[₿]INSTITUTE PUCATION

٦

R	ea	cti	ions	of	aci	ids
•••	<u>u</u>	C CI	0113		uu	103

Г

1. With	h bases: Acid + Base> Salt + H ₂ O	
2. With	h carbonates: Acid + Carbonate → Salt + H ₂ O + CO ₂	
3. With	h metals: Acid + Metal> Salt + H ₂	
Q: What is • A s	Notice: A salt is always formed in these reactions of acids s a salt? salt is formed when the <u>H⁺ ion of</u> an <u>acid</u> is <u>replaced by</u> a <u>metal ion or ammonium ion</u>	
Q: Write b	(NH4 ⁺) balanced chemical equations for the following reactions.	
i)	Hydrochloric acid and sodium hydroxide HCl + NaOH → NaCl + H ₂ O	
ii)	Ethanoic acid and sodium hydroxide CH ₃ COOH + NaOH — CH ₃ COONa + H ₂ O	
iii)	Hydrochloric acid and sodium carbonate 2HCL + Na_2CO_3 \longrightarrow 2NaCl + H_2O + CO_2	
iv)	Ethanoic acid and sodium carbonate $CH_3COOH + Na_2CO_3 \longrightarrow CH_3COONa + H_2O + CO_2$	
v)	Hydrochloric acid and magnesium $2HCI + Mg \longrightarrow MgCI_2 + H_2$	
vi)	Ethanoic acid and magnesium 2CH ₃ COOH + Mg → (CH ₃ COO) ₂ Mg + H ₂	
THE INFO	8	

[≝]INSTITUTE^o[£] EDUCATION

Q: What is neutralisation?

• Neutralisation is the reaction between an acid and a base to form a salt and water

Q: Give three examples of neutralisation in everyday life

- Indigestion tablets are alkalis are taken to neutralise excess stomach acid and give relief from heartburn
- Lime (CaO) is an alkali spread on soil to neutralise the acidity of the soil allowing plants to grow
- 3) Vinegar is an acid that will neutralise alkaline sting of wasps

Household examples of acids and bases

Acids	Bases
Ethanoic acid in vinegar as a	Sodium hydroxide in caustic soda
flavouring agent	in oven cleaners
Citric acid in lemons and oranges	Magnesium hydroxide in milk of
	magnesia for indigestion and constipation

EDUCATION

Acids and Bases – Questions

Q1:

- a) What is an acid, according to the Arrhenius theory?
- b) What is a monobasic acid?
- c) Give an example of an acid that is monobasic
- d) What is a dibasic acid?
- e) Give an example of an acid that is dibasic
- f) What is a tribasic acid?
- g) Give an example of an acid that is tribasic
- h) Write an equation to show the dissociation of hydrogen chloride in water
- i) Write an equation to show the dissociation of nitric acid in water
- j) Write an equation to show the dissociation of ethanoic acid in water
- k) Write an equation to show the dissociation of sulfuric acid in water
- I) Write an equation to show the dissociation of phosphoric acid in water
- m) If an acid is represented by 'HA' write a chemical equation to represent the dissociation of this acid in water

Q2:

- a) What is a base, according to the Arrhenius theory?
- b) What is meant by an alkali?
- c) What is a monobasic base?
- d) Give an example of a base that is monobasic
- e) What is a dibasic base?
- f) Give an example of a base that is dibasic
- g) What is a tribasic base?
- h) Give an example of a base that is tribasic

Q3:

- a) What is an acid, according to the Bronsted-Lowry theory?
- b) Write a chemical equation to show why hydrochloric acid classifies as an acid according to Bronsted and Lowry
- c) What is a base, according to the Bronsted-Lowry theory?
- d) Write a chemical equation to show why ammonia classifies as a base according the Bronsted and Lowry
- e) What is meant by an amphoteric substance?
- f) Give an example of an amphoteric substance
- g) Write a chemical equation to show an amphoteric substance acting as an acid
- h) Write a chemical equation to show an amphoteric substance acting as base

Q4: Give three limitations of the Arrhenius definitions of acids and bases/differences between the Arrhenius and Bronsted-Lowry definitions of acids and bases

Q5:

- a) What is a strong acid, according to Arrhenius?
- b) What is a strong acid, according to Bronsted-Lowry?
- c) Give three examples of strong acids and write their chemical formulae
- d) What is a weak acid, according to Arrhenius?
- e) What is a weak acid, according to Bronsted-Lowry?
- f) Give an example of a weak acid <u>and</u> write its chemical formula
- g) What is a strong base, according to Arrhenius?
- h) What is a strong base, according to Bronsted-Lowry?
- i) Give two examples of strong bases and write their chemical formulae
- j) What is a weak base, according to Arrhenius?
- k) What is a weak base, according to Bronsted-Lowry?
- I) Give two examples of a weak bases and write their chemical formulae

Q6:

- a) What is a conjugate acid?
- b) What is a conjugate base?
- c) What is a conjugate acid base pair?
- d) *Which of the following acid/base pairs is not a conjugate pair?

H₃O⁺/H₂O HSO₄⁻/H₂SO₄ H₃PO₄/HPO₄²⁻

*Q7:

- a) Identify the conjugate acid of:
- i. H₂PO₄⁻
- ii. HPO4²⁻
- iii. HSO₃[−]
- iv. SO₃²⁻
- v. CH₃COO ⁻
- vi. CH₃NH⁻
- vii. H₂O
- b) Identify the conjugate base of:

i. –	HSO ₃ [−]
ii.	H ₂ PO ₄ ⁻
iii.	HNO ₂ ⁻
iv.	HCIO ₂
v .	HCIO ⁻
vi.	H ₂ CO ₃
vii.	H₂O

11

Q8: Explain why:

- i. HCl has a weak conjugate base
- ii. NH₃ has a strong conjugate acid

Q9:

- a) What is a conjugate acid-base pair?
- b) * In the following reactions, identify which species are acting as acids and which species are acting as bases and identify the conjugate acid-base pairs

i)
$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

ii) $HSO_4^- + HNO_2 \implies H_2NO_2^+ + SO_4^{2-}$
iii) $H_2SO_4 + HF \implies H_2F^+ + HSO_4^-$

*Q10: Identify two species acting as acids and also their conjugate bases in the following equilibrium:

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^+ + H_3O^+$$

*Q11: Identify two species acting as bases and also their conjugate acids in the following equilibrium:

$$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^-$$

Q12:

a) What is a salt?

- *b) Write a balanced chemical equation for the reaction of
 - i. Hydrochloric acid and sodium hydroxide
 - ii. Hydrochloric acid and magnesium
 - iii. Ethanoic acid and sodium hydroxide
 - iv. Ethanoic acid and sodium carbonate
 - v. Hydrochloric acid and sodium carbonate
 - vi. Ethanoic acid and magnesium
 - vii. Sulfuric acid and calcium
 - viii. Nitric acid and calcium carbonate
 - ix. Sulfuric acid and potassium hydroxide

Q13:

- a) What is neutralisation?
- b) Give three everyday examples of neutralisation
- c) Give two household examples and acids and two household examples of bases

Calculation/Working out answers

```
Q6:
```

```
d) H_3PO_4/HPO_4^{2-}
```

```
Q7:
```

a)

i.	H₃PO₄
ii.	H₂PO₄ [−]
iii.	H ₂ SO ₃
iv.	HSO₃ [–]
v.	CH₃COOH
vi.	CH ₃ NH ₂
vii.	H₃O⁺

b)

i.	SO ₃ ^{2–}
ii.	HPO4 ²⁻
iii.	NO2 ²⁻
iv.	ClO₂ [−]
v.	CIO ^{2–}
vi.	HCO₃⁻
vii.	ОН⁻

Q9:

b)

```
    Acids: H<sub>2</sub>O ; NH<sub>4</sub><sup>+</sup>
    Bases: OH<sup>-</sup> ; NH<sub>3</sub>
    Conjugate acid-base pairs: H<sub>2</sub>O and OH<sup>-</sup>
NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup>
```

- ii) Acids: HSO₄⁻ ; H₂NO₂⁺
 Bases: SO₄²⁻ ; NNO₂
 Conjugate acid-base pairs: HSO₄⁻ and SO₄²⁻ H₂NO₂⁺ and NNO₂
- iii) Acids: H_2SO_4 ; H_2F^+ Bases: HSO_4^- ; HF

Conjugate acid-base pairs: H_2SO_4 and $HSO_4^ H_2F^+$ and HF

[₿]INSTITUTE [©]F EDUCATION

Q10:

<u>Conjugate bases</u>
CH₃COO [–]
H ₂ O

Q11:

Bases	Conjugate acids
H ₂ O	H₃O⁺
H ₂ PO ₄ ⁻	H ₃ PO ₄

Q12:

b)

i.	HCl + NaOH ───► NaCl + H₂O
ii.	2HCl + Mg MgCl ₂ + H ₂
iii.	CH ₃ COOH + NaOH CH ₃ COONa + H ₂ O
iv.	2CH ₃ COOH + Na ₂ CO ₃
v.	2HCl + Na ₂ CO ₃ > 2NaCl + H ₂ O + CO ₂
vi.	2CH ₃ COOH + Mg (CH ₃ COO) ₂ Mg + H ₂
vii.	H ₂ SO ₄ + Ca CaSO ₄ + H ₂
viii.	2HNO ₃ + CaCO ₃ Ca(NO ₃) ₂ + H ₂ O + CO ₂
ix.	H ₂ SO ₄ + 2KOH

